Die Berechnung der mt eines Turmdrehkrans

(mt = Meter × Tonnen = MeterTonnen)

Autor: Andreas Bruderer

Version 1.00 vom März 2021

Inhaltsverzeichnis

Die Baugeräteliste (BGL)	3
Die Berechnung des Lastmomentes in mt	3
Vorgehen	4
Randbedingungen	
Verschiedene Lastkurven	
Beispiel Richier-Weitz X 1267, max. Ausladung 40 m, 4 Strang	6
Beispiel Liebherr 370 EC-B 12 Fibre, max. Ausladung 50 m	
Beispiel Wolff 7534.16 clear, max. Ausladung 50 m, 4 Strang	10
Gegenüberstellung	
Schlussbemerkungen	

Die Baugeräteliste (BGL)

- Die Baugeräteliste ist ein seit vielen Jahrzehnten anerkanntes aber sehr teures Standardwerk mit über 15'000 Datensätzen.
- Darin sind auch die Turmdrehkrane gelistet.
- Wie die mt eines Turmdrehkrans berechnet werden, ist darin enthalten.
- Link: bgl-online.info.
- Die deutschen Hersteller von Turmdrehkranen geben das durchschnittliche Lastmoment von allen maximalen Ausladungen gemäss der BGL an. Beispiel beim Liebherr 370 EC-B 12 Fibre:

TCS-002377-LBC-01 • EN 14439:2009 - A3 • BGL C.0.10.0355 • 04.20

Massgebend ist die Zahl 355 für ein Lastmoment von 355 mt. Das ist der **Durchschnitt von allen Auslegerlängen** mit der Lastkurve LM2 / Load-Plus.

Die Berechnung des Lastmomentes in mt

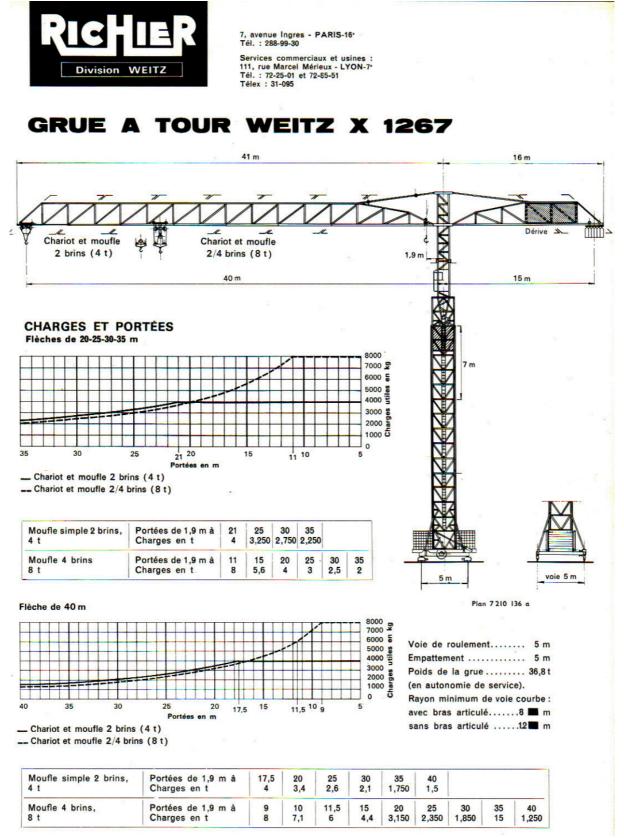
- Die Metertonnen berechnet man aus der Ausladung in m und der Tragkraft an der betreffenden Stelle und multipliziert die beiden Werte: m × t = mt.
- Als Voraussetzung sollte man bei den zu berechnenden mt möglichst viele Messwerte haben; die Datenblätter enthalten meistens zu wenige Anhaltspunkte.
- Falls dies der Fall ist, so muss man aus der hoffentlich vorhandenen Lastkurve die entsprechenden Werte herauslesen.
- Pro Meter Ausladung berechnet man das Lastmoment. Diese Werte addiert man und teilt die Summe durch die Anzahl der Messungen.
- Jeder Turmdrehkran hat bei verschiedenen maximalen Ausladungen verschiedene Lastmomente. Der Hersteller muss **alle Auslegerlängen** durchrechnen. Der Durchschnitt ist das Resultat der Leistungsfähigkeit eines Turmdrehkrans.

Vorgehen

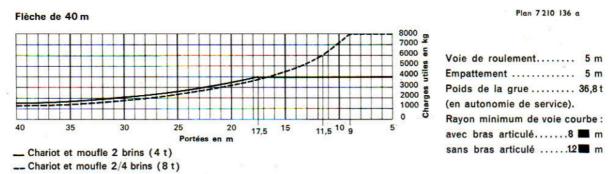
- Man entscheidet sich für eine maximale Ausladung, die man untersuchen will.
- Man nimmt ein Datenblatt von einem Turmdrehkran und entscheidet sich für die zu untersuchende maximale Ausladung (der Ausleger ist je nach Untersuchung verkürzt).
- Aus der Tabelle der Traglasten entnimmt man die Werte und schreibt sie tabellarisch auf.
- In der ersten Spalte sollte die Ausladung in m stehen und in der zweiten Spalte die Tragkraft in t.
- In der dritten Spalte multipliziert man die Ausladung in m mit der Tragkraft in t und erhält so an der entsprechenden Ausladung die mt.
- Man ermittelt die äusserste Stelle vom Turm her gesehen, wo der Turmdrehkran das maximale Lastmoment hat.
- Das ist dort der Fall, wo der Turmdrehkran an der weitesten Ausladung noch die maximale Tragkraft hat. Das ist der Knickpunkt mit den zumeist höchsten mt.
- Alle Ausladungen vom Turm bis zum Knickpunkt mit dem max. Lastmoment lässt man bei der Berechnung weg, da diese zu einem falschen Resultat führen.
- Diejenige Stelle, an der der Turmdrehkran das maximale Lastmoment hat (der Knickpunkt), muss in die Berechnung einbezogen werden.
- Begründung: Bei der Anlenkung beim Turm kann der Turmdrehkran die maximale Tragkraft heben, aber die Berechnung z. B. von 12 t bei 3 m Ausladung ergibt ein Lastmoment von nur 36 mt.
- Man addiert alle Lastmomente in mt und dividiert die Summe durch die Anzahl der gemessenen Traglasten. So hat man pro max. Auslegerlänge das Lastmoment für einen Turmdrehkran.

Randbedingungen

- Die berechneten Lastkurven gelten bis zur max. Hakenhöhe gemäss Betriebsanleitung des Herstellers.
- Bei einer höheren Hakenhöhe muss das zusätzliche Seilgewicht von der Laufkatze/von der Spitze des Wippauslegers bis zum tiefsten Punkt der Baustelle berücksichtigt werden. Dadurch reduziert sich die Lastkurve und der Turmdrehkran wird etwas weniger leistungsfähig. Die max. Anzahl der Stränge von der Laufkatze/von der Spitze des Wippauslegers muss ebenfalls berücksichtigt werden
- Beim Liebherr 370 EC-B 12 Fibre muss das zusätzliche Seilgewicht bei einer Hakenhöhe von mehr als 50 m berücksichtigt werden und das bei zwei Strängen von der Laufkatze bis zum tiefsten Punkt der Baustelle.
 Wegen diesem zusätzlichen Seilgewicht kann er etwas weniger heben, was die Lastkurve leicht reduziert.
 Das Faserseil soLITE 20-55 wiegt 0.29 kg/m und das soLITE 22-73 wiegt 0.38 kg/m.
- Die Betriebsanleitung vom Wolff 7534.16 clear erwähnt, dass die CCPlus Steuerung (Überwachung durch SPS) sehr hohe Hakenhöhen automatisch erkennt und in der Kabine bei einem zu schweren Seilgewicht eine Warnung am Display anzeigt.


abwechselnd bewegt werden dürfen.

Verschiedene Lastkurven

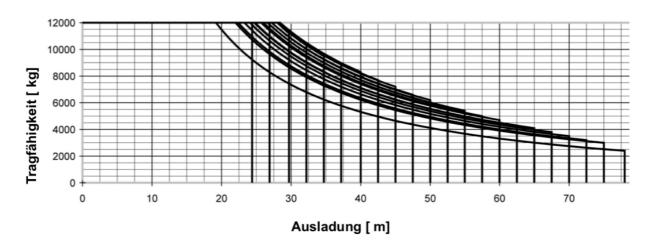

- Es gibt verschiedene Lastkurven, welche unterschiedliche Traglasten enthalten.
- Liebherr nennt diese LM1 als Standard-Lastkurve bei Turmdrehkranen mit Litronic (Überwachung durch SPS) und LM2 / Load-Plus als erhöhte Lastkurve bei Turmdrehkranen mit Litronic (Überwachung durch SPS).
 Beim Transport von Menschen ist die erhöhte Lastkurve LM2 / Load-Plus deaktiviert.
 - Die Umschaltung zwischen Lastkurven LM1 und LM2 / Load-Plus erfolgt über einen Tastendruck in der Kabine oder an der Fernsteuerung.
- Wolff nennt seine erhöhte Lastkurve Boost 110% bei neueren Turmdrehkranen mit CCPlus (Überwachung durch SPS) und schreibt dazu: Mit der Funktion Boost darf die Belastung den bei den Traglasten beschriebenen Lastmomentbereich um bis zu 10% überschreiten und das ist keine Überlast.

 Dabei gilt jedoch die Einschränkung, dass das Hubwerk und das Katzfahrwerk (Laufkatzkran) oder das Hubwerk und das Einziehwerk (Wippkran) nur
 - Bei Wolff wird die Funktion Boost am Display in der Kabine ein- und ausgeschaltet.

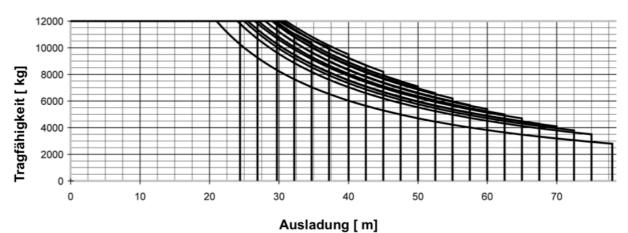
Beispiel Richier-Weitz X 1267, max. Ausladung 40 m, 4 Strang

Richier-Weitz X 1267 Datenblatt. Untersucht wurde die gestrichelte Linie der unteren Lastkurve.

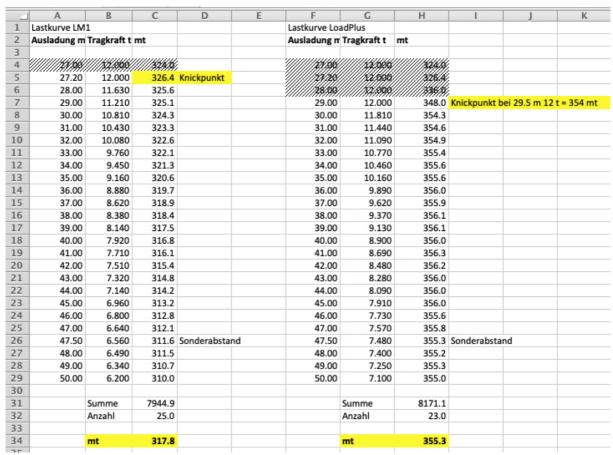
Die untersuchte Lastkurve bei der maximalen Ausladung von 40 m. Untersucht wurde die Lastkurve beim 4 strängigen Einsatz mit der maximalen Tragkraft von 8'000 kg. Sie wird gestrichelt dargestellt.


	A	В	С	D
1	Ausladung m	Tragkraft t	mt	
2	9.0	8.000	72.000	Knickpunkt
3	10.0	7.100	71.000	
4	11.0	6.200	68.200	
5	11.5	6.000	69.000	
6	12.0	5.800	69.600	
7	13.0	5.100	66.300	
8	14.0	4.900	68.600	
9	15.0	4.400	66.000	
10	16.0	4.100	65.600	
11	17.0	3.950	67.150	
12	18.0	3.600	64.800	
13	19.0	3.300	62.700	
14	20.0	3.150	63.000	
15	21.0	2.950	61.950	
16	22.0	2.700	59.400	
17	23.0	2.550	58.650	
18	24.0	2.450	58.800	
19	25.0	2.350	58.750	
20	26.0	2.100	54.600	
21	27.0	2.050	55.350	
22	28.0	1.950	54.600	
23	29.0	1.900	55.100	
24	30.0	1.850	55.500	
25	31.0	1.800	55.800	
26	32.0	1.650	52.800	
27	33.0	1.600	52.800	
28	34.0	1.550	52.700	
29	35.0	1.500	52.500	
30	36.0	1.450	52.200	
31	37.0	1.400	51.800	
32	38.0	1.350	51.300	
33	39.0	1.300	50.700	
34	40.0	1.250	50.000	
35				
36	Anzahl		33.0	
37	Summe		1969.3	
38				
39	Durchschnitt		59.7	bei 40 m Ausladung in mt

Die gelb markierten Werte konnten aus der Tabelle im Datenblatt entnommen werden. Die restlichen Werte mussten aus der Lastkurve entnommen werden.


Mit dem Ausleger für die max. 40 m Ausladung hatte der Richier-Weitz X 1267 ein Lastmoment von 60 mt.

Beispiel Liebherr 370 EC-B 12 Fibre, max. Ausladung 50 m


370 EC-B 12 Fibre: LM1 Lastkurve

370 EC-B 12 Fibre: Load-Plus Lastkurve

Bei beiden Lastkurven fällt auf, dass bei der max. möglichen Ausladung von 78 m (unterste Kurve) eine recht starke Reduzierung der Tragkraft im ganzen Bereich der Kurve erfolgt.

Die gestrichelten Zellen wurden absichtlich so dargestellt, weil der Bereich vom Turm bis zu dem Bereich, wo sich das höchste Lastmoment befindet (der Knickpunkt), für die Berechnung nicht nutzbar ist.

- Bei der Lastkurve LM2 / Load-Plus ist der Knickpunkt bei 29.5 m, wo die maximale Tragkraft von 12 t noch gehoben werden kann, was ein Lastmoment von 354 mt ergibt.
- Bei der Lastkurve LM2 / Load-Plus fällt auf, dass alle Messwerte bei ca. 350 mt sind.

Beispiel Wolff 7534.16 clear, max. Ausladung 50 m, 4 Strang

-	1 A	В	C	D	E	F	G	Н	I
1	Ohne Boost					Mit Boost			
2	Ausladung n	Tragkraft t	mt	Ausladung m Tragkraft t		mt			
3	22.50	16.340	367.7	Knickpunkt		1/////2028/8	16.500	375.3	
4	23.00	15.960	367.1			23.00	16,500	379.5	
5	24.00	15.230	365.5			24.00	16,500	396,0	
6	25.00	14.570	364.3			25.00	16,030	400.8	
7	26.00	13.960	363.0			26.00	15.630	406.4	Knickpunk
8	27.00	13.390	361.5			27.00	14.730	397.7	
9	27.50	13.120	360.8			27.50	14.430	396.8	
10	28.00	12.860	360.1			28.00	14.150	396.2	
11	29.00	12.370	358.7			29.00	13.610	394.7	
12	30.00	11.910	357.3			30.00	13.100	393.0	
13	31.00	11.480	355.9			31.00	12.630	391.5	
14	32.00	11.080	354.6			32.00	12.190	390.1	
15	32.50	10.890	353.9			32.50	11.980	389.4	
16	33.00	10.710	353.4			33.00	11.780	388.7	
17	34.00	10.350	351.9			34.00	11.390	387.3	
18	35.00	10.020	350.7			35.00	11.020	385.7	
19	36.00	9.700	349.2			36.00	10.670	384.1	
20	37.00	9.400	347.8			37.00	10.340	382.6	
21	37.50	9.260	347.3			37.50	10.190	382.1	
22	38.00	9.120	346.6			38.00	10.030	381.1	
23	39.00	8.850	345.2			39.00	9.740	379.9	
24	40.00	8.590	343.6			40.00	9.450	378.0	
25	41.00	8.350	342.4			41.00	9.190	376.8	
26	42.00	8.120	341.0			42.00	8.930	375.1	
27	42.50	8.010	340.4			42.50	8.810	374.4	
28	43.00	7.900	339.7			43.00	8.690	373.7	
29	44.00	7.690	338.4			44.00	8.460	372.2	
30	45.00	7.490	337.1			45.00	8.210	369.5	
31	46.00	7.290	335.3			46.00	8.020	368.9	
32	47.00	7.110	334.2			47.00	7.820	367.5	
33	47.50	7.020	333.5			47.50	7.720	366.7	
34	48.00	6.930	332.6			48.00	7.620	365.8	
35	49.00	6.760	331.2			49.00	7.440	364.6	
36	50.00		330.0			50.00	7.260	363.0	7
37									
38		Summe	11861.6				Summe	11443.4	
39		Anzahl	34.0				Anzahl	30.0	
40									
41		mt	348.9				mt	381.4	

Gegenüberstellung

	Liebherr 370	EC-B 12 Fibre	Wolff 7534.16 clear, 4 Strang			
Max. Ausladung beim Vergleich	50 m		50 m			
Lastkurve	LM1	LM2 / Load-Plus	Ohne Boost	Mit Boost		
Max. Lastmoment berechnet in diesem Artikel	318 mt	355 mt	349 mt	381 mt		
Angabe mt nach Hersteller	-	355 mt	315 mt (→ gleiche Angabe wie beim 7534.8 clear)	-		
Max. Tragkraft	12.0 t / bis 27.2 m	12.0 t / bis 29.0 m	16.5 t / bis 22.0 m 12 t bei ca. 29.7 m	16.5 t / bis 24.0 m 12 t bei ca. 32.3 m		
Max. Nutzlastmoment nach Hersteller	-	Keine Angabe	-	3'980 kNm		
Tragkraft bei max. 50 m Ausladung	6.2 t / 310 mt	7.1 t / 355 mt	6.6 t / 330 mt	7.3 t / 363 mt		
Seil	Faserseil		Stahlseil			

Schlussbemerkungen

- Bei Potain fehlen uns die passenden Unterlagen; deshalb wurde in diesem Bericht kein Potain berücksichtigt.
- Potain gibt bei den Datenblättern keine mt an, so dass man nicht weiss, wie gross die Leistungsfähigkeit ist.
- Jeder Typ jedes Herstellers hat Vor- und Nachteile und sei es der Preis.
- Die meisten Bauunternehmungen in Europa haben sich für einen bis zwei Hersteller von Turmdrehkranen aus Europa entschieden, was die Austauschbarkeit von Bauteilen (besonders der Turmelemente) ermöglicht, was ein Investitionsschutz ist bei gekauften Turmdrehkranen.
- Bei gemieteten Turmdrehkranen spielt der Hersteller keine grosse Rolle. Wer zum richtigen Zeitpunkt und der benötigten Dauer einen zur Baustelle passenden Turmdrehkran auf die Baustelle liefern und montieren kann, der kommt in die engere Auswahl. Entscheidend ist der Preis sowie das Vertrauen in den Hersteller und den Importeur, die Produkte und den Service.